Piecewise Spectral Collocation Method for Second Order Volterra Integro-Differential Equations with Nonvanishing Delay
نویسندگان
چکیده
منابع مشابه
Fuzzy collocation methods for second- order fuzzy Abel-Volterra integro-differential equations
In this paper we intend to offer new numerical methods to solve the second-order fuzzy Abel-Volterraintegro-differential equations under the generalized $H$-differentiability. The existence and uniqueness of thesolution and convergence of the proposed methods are proved in details and the efficiency of the methods is illustrated through a numerical example.
متن کاملConvergence Analysis of the Legendre Spectral Collocation Methods for Second Order Volterra Integro-Differential Equations
A class of numerical methods is developed for second order Volterra integrodifferential equations by using a Legendre spectral approach. We provide a rigorous error analysis for the proposed methods, which shows that the numerical errors decay exponentially in the L∞-norm and L-norm. Numerical examples illustrate the convergence and effectiveness of the numerical methods. AMS subject classifica...
متن کاملSPLINE COLLOCATION FOR FREDHOLM AND VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS
A collocation procedure is developed for the linear and nonlinear Fredholm and Volterraintegro-differential equations, using the globally defined B-spline and auxiliary basis functions.The solutionis collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula.The error analysis of proposed numerical method is studied theoretically. Numerical results are given toil...
متن کاملDiscrete Collocation Method for Solving Fredholm–Volterra Integro–Differential Equations
In this article we use discrete collocation method for solving Fredholm–Volterra integro– differential equations, because these kinds of integral equations are used in applied sciences and engineering such as models of epidemic diffusion, population dynamics, reaction–diffusion in small cells. Also the above integral equations with convolution kernel will be solved by discrete collocation metho...
متن کاملfuzzy collocation methods for second- order fuzzy abel-volterra integro-differential equations
in this paper we intend to offer new numerical methods to solve the second-order fuzzy abel-volterraintegro-differential equations under the generalized $h$-differentiability. the existence and uniqueness of thesolution and convergence of the proposed methods are proved in details and the efficiency of the methods is illustrated through a numerical example.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Applied Mathematics and Mechanics
سال: 2022
ISSN: ['2070-0733', '2075-1354']
DOI: https://doi.org/10.4208/aamm.oa-2021-0334